
CLIgen Manual

CLIgen version 3.5

Olof Hagsand

December, 2014

Contents

1 Introduction 3

2 Command syntax 4
2.1 Keywords . 4
2.2 Runtime behaviour . 5
2.3 Help texts . 6
2.4 Callbacks . 6
2.5 Assignments . 7
2.6 Trees . 7

3 Variables 9
3.1 Basic structure . 9
3.2 String . 9
3.3 Integers . 10
3.4 Addresses . 10
3.5 Uuid . 11
3.6 Time . 11
3.7 Boolean . 11
3.8 Decimal64 . 11
3.9 Keyword . 12
3.10 Choice . 12
3.11 Expand . 12
3.12 Regular expressions . 13

4 Operators 13
4.1 Choice and grouping . 14
4.2 Optional elements . 14

5 API 15
5.1 CLIgen variables . 15
5.2 Initializing . 17
5.3 Parsing syntax files . 17
5.4 Global variables . 18
5.5 Command loop . 18

1

CONTENTS CONTENTS

6 Advanced API 19
6.1 Writing a callback function . 19
6.2 Registering callbacks . 20
6.3 Completion . 21

7 Installation 22

2

1 INTRODUCTION

Designer

Spec

User
libcligen

CLI
CLI.c

API

Figure 1: CLIgen usage: a designer implements a CLI by specificying the syntax
in a specification file and the CLI source code using the CLIgen API.

1 Introduction

CLIgen builds interactive syntax-driven command-line interfaces in C from a
high-level syntax specification. Interactive CLIs are often used in communica-
tion devices such as routers and switches. However, any devices with a textual,
syntax-driven, command-based interface can use CLIgen to make CLI program-
ming easy.

CLIgen takes a syntax specification as input, generates a tree representation
of the syntax, and provides an interactive command-line tool with completion,
help, modes, etc.

A designer formulates the command-line syntax and writes callback functions
in C to implement the semantics of the commands.

A good starting point is the hello world example with a simple syntax specifica-
tion (”hello world”) and a callback with a print statement, which produces the
following CLI executable:

> ./cligen_hello

hello> hello world

Hello World!

hello>

The complete cligen hello C application is included in the source code distri-
bution.

Figure 1 shows a typical workflow when working with CLIgen. A designer
specifies the CLI syntax by editing a CLIgen specification file and writing a
C-program. When users access the CLI at runtime, the specification file is
loaded and the CLI uses the API of the CLIgen library to interpret the com-
mands.

An example of a CLIgen specification file of the hello world application is:

prompt="hello> " # Assignment of prompt

hello("Greet the world"){ # ’hello’ command with help text

world, cb("Hello World!"); # ’world’ command with callback

}

The specification above shows examples of the following key ingredients of a
specification:

3

2 COMMAND SYNTAX

• Command syntax specifies the syntax of the actual commands, and are
the main part of a specification. The command syntax is fully described
in Section 2.

• Callbacks are functions called when a command has been entered by a
user. You may specify an argument to a callback. Callbacks are a part of
the API described in Section 5.

• Assignments are used to set properties of the CLI and its commands, such
as prompts, modes authorization, visibility, etc. Assignments are either
global or per-command.

• Help text provides help text for individual commands.

• Comments begin with the ’#’ sign.

The following sections will describe all aspects of designing CLIgen application.
Programming using the CLIgen API in C is described in Section 5.

2 Command syntax

The command syntax consists of a combination of keywords, variables and op-
erators:

• Keywords are constant strings representing fixed command words.

• Variables are placeholders for user-defined input.

• Operators are used to combine keywords and variables in different ways.
Operators include ’choice’, ’option’, ’sequence’, etc. Operators are further
described in Section 4.

For example, the command syntax ip tcp <uint16>; have two keywords: ip,
and tcp and one variable: <uint16>. They are combined in a sequence, that is,
the CLI expects them to be typed one after the other.

2.1 Keywords

The simplest syntax consists only of keywords. Such a syntax can be specified
as follows:

aa bb{

ca;

cb;{

dd;

ee;

}

}

ff;

A CLI loaded with the specification above accepts the following strings as in-
put:

4

2.2 Runtime behaviour 2 COMMAND SYNTAX

aa bb ca

aa bb cb

aa bb cb dd

aa bb cb ee

ff

Note the following:

• Newlines are not significant, except after comments. This means that an-
other way of specifying the syntax above is: aa bb{ca;cb;{dd;ee;}}ff;.

• Keywords specified one after another is a sequence. Example: aa bb;.
An alternative of expressing the same syntax is: aa{bb;}

• Semicolon terminates a complete command. This means that aa bb cb

is accepted as a complete command, but not aa bb in the syntax above.

• Semicolons also act as a choice, you can choose either dd or ee in the
syntax above.

• Keywords can also be specified using variables: <string keyword:aa>,
there are some advantages with this which may get apparent when pro-
gramming using the API (see Section 5).

• The syntax above can be written in a more compact way, such as aa bb

(ca|cb [dd|ee]);ff;. This is described more in Section 4

2.2 Runtime behaviour

A CLI with the syntax above will present the user with a list of commands.
On the top-level, only aa or bb may be chosen when a question mark is en-
tered:

> ’?’

aa

gg

If the user prints an ’a’, followed by a ’TAB’, the CLI performs completion to
aa since there is only one alternative:

> a’TAB’

> aa ’TAB’

> aa bb ’TAB’

> aa bb c’TAB’

ca cb

> aa bb c

In the example, two more TABs are entered, one for each command level and
completion continues until the commands are not unique. In the last TAB, the
CLI shows the available commands (ca and cb).

As long as a command is unique it is not necessary to complete the whole
string. For example, the following two strings are equivalent from the CLIs
perspective:

5

2.3 Help texts 2 COMMAND SYNTAX

> aa bb cb dd

> a b cb d

Before finishing a command (with return), a unique command must be selected.
The CLI gives an error code if the command is unknown, ambiguous or incom-
plete:

> a

CLI syntax error in: "a": Incomplete command

> aa bb c

CLI syntax error in: "aa bb c": Ambigous command

> aa bb dd

CLI syntax error in: "aa bb dd": Unknown command

2.3 Help texts

Help texts are given within parenthesis following a keyword or variable. The help
text appears when you invoke the help command ’?’ in the CLI runtime.

For example, assume the following syntax:

ip("The IP protocol"){

udp("The UDP protocol") <ipaddr>("IPv4 address");

tcp("The TCP protocol") <uint16>("Port number");

}

If a user has typed ’ip ’ and ’?’, the following help text appears:

cli> ip ’?’

tcp The TCP protocol

udp The UDP protocol

2.4 Callbacks

When a unique command has been selected, a callback may be called. Callbacks
are typically associated with commands using the file syntax:

aa bb{

ca,fn1("ca");

cb,fn1("cb");{

dd,fn2();

ee,fn3((int)42);

}

}

In the example, the function fn1 is called with "ca" as argument if aa bb ca,
is selected. The same function is called also if aa bb cb is selected, but with
another argument. For other commands, fn2 is called without argument, and
fn3 is called with the integer argument 42.

Note that callbacks may only be associated with terminal commands. For ex-
ample, aa bb may not have a callback function.

6

2.5 Assignments 2 COMMAND SYNTAX

The details on how to write callback functions, such as fn1 - fn3 is described
in detail in Section 5.

2.5 Assignments

You can assign values to global and local variables. Global variables are valid for
the whole syntax, while local variables only apply to a single command.

In the current release, there are two pre-defined local variables:

• hide specifies that a command is not visible when listing or completing
commands with ’?’ and ’TAB’. Still, the command is selectable and may
be selected if you type it. This can be useful if there are commands that
should be known only by expert users.

• auth. defines authorization level the user should have to be able to use
the command.

In the following example, aa bb ca is not visible, whereas aa bb cb and aa bb

cb dd are only shown if the user has show commands priviligies.

aa bb{

ca,hide;

cb,auth="show";{

dd,auth="show";

ee;

}

}

A global variable is assigned on the top-level. There is currently only one pre-
defined global variable (treename as described in the next section). But it is
easy for a programmer to implement a global variable and define semantics to
it.

The tutorial application supports prompt and comment character:

prompt="cli> "; # Assignment of prompt

comment="#"; # Same comment as in syntax

Section 5.4 describes how the C-API can be used to define semantics for a global
variable.

2.6 Trees

CLIgen can handle multiple syntax trees. A user can switch between trees (i.e.,
change CLI mode), or extend a tree with a sub-tree (using tree-references).

A tree is named using a special global treename assignment. The following
example shows two syntax trees: tree1 and tree2.

treename="tree1";

x{

y;

7

2.6 Trees 2 COMMAND SYNTAX

}

treename="tree2";

z{

x;

}

When parsing the syntax above, a CLIgen tree-list consisting of two trees will
be created. By default, the first parsed tree is the active tree.

changetree <tree:string>, changetree("tree2");

Note that the changetree callback needs to be implemented as a callback func-
tion in C to actually change the syntax mode. Such a callback is implemented
in the tutorial and is also described in more detail in Section 5.

2.6.1 Tree references

A CLIgen syntax tree may reference another tree as an extension using the
reference operator ’@’.

The following specification references itself:

treename="T";

foo;

recurse @T;

which means that the following sentences are valid commands:

foo

recurse foo

recurse recurse foo

recurse recusre recurse foo

and so on.

Callbacks can be parametrized when using tree references. This means that you
can specify which callback to use in the reference of the tree. This means that
different callbacks can be called depending on how you reference the tree.

The following examples shows a main tree and a sub-tree.

treename="main";

add @sub, add();

del @sub, del();

treename="sub";

x{

y, fn("a");

}

The main tree references the subtree twice. In the first reference, add("a") is
called when invoking the command add x y. In the second instance del("a")

is invoked when invoking the command del x y.

Note that the parameter list ("a") is not substituted, the original is used. In
the example this means that add("a") is called regardless of any parameters to

8

3 VARIABLES

add() in the @sub invocation. An exception to this rule if there is no callback
given in the original tree (e.g. as in x { y; }, then the callback and argu-
ment list from the tree reference is used (eg add() including aventual parameter
list)1.

It may be useful with functional substitution as shown above when the subtree
represents a large common data-modeling sub-tree, where the data (x y) is the
same but the operation(add/del) is different.

In the example, the ’treename’ variable is used to define a new CLIgen tree. It
is possible using the C-API to change this keyword to something else by using
the API function cligen treename keyword.

3 Variables

Variables are placeholders for user input. They also give support for lexical
checking. The int32 type, for example, only accepts 32-bit integers, while
string accepts any sequence of characters.

3.1 Basic structure

A variable has the following basic components:

• name - How the variable is referenced, such as in a callback.

• type - The type of the variable. If no type is given, it is by default the
same as name.

• show - How the variable is displayed in help texts (such as after a ’?’ or
’TAB’. If no show field is given, it defaults to name.

The variable syntax has several forms:

<int32>;

<a:int32>;

<a:int32 show:number>("A 32-bit number")

In the first form, both name, type and show is int32. In the second form,
the name and show is ”a”, while type is int32. In the last form, all fields are
explicitly given, and there is also a help-text.

An example of the last, most explicit form in a CLI:

cli> ’?’

<number> A 32-bit number

3.2 String

The simplest form of a string specification is: <string>, which defines a string
variable with the name ’string’.

1Yes, this semantics is somewhat complex and needs revision

9

3.3 Integers 3 VARIABLES

A more advanced string variable specification is the following:

address <addr:string>("Address to home");

where the name of the string variable is addr. The name can be used when
referring to the variable in a callback, and is also used in the help text:

cli> address ’?’

addr Address to home

A string may contain all characters with some minor exceptions. Most notably,
a string can not contain a question mark, since it is used for querying syntax in
the CLI. Also, if a string contains spaces, it must be contained within double
quotes. The following examples are all valid strings:

i_am_a_string

()/&#

"I am a string"

ab"d

A string can be constrained by a length statement. If given, the number of
characters in a string is limited to a min/max interval, or just a max.

Example:

<addr:string length[8:12]>

<addr:string length[12]>

which means that the addr string, if given, must be between 8 and 12 characters
long, or just limited to 12 characters, respectively.

A variant of string is rest which accepts all characters until the end-of-line.

3.3 Integers

There are several integer variables, signed, unsigned, and 8, 16, 32 or 64-bits.
For example, the int32 variable allows any 32-bit integer, and can be specified
in decimal or hex format.

Further, an allowed range of integer can specified, either as an interval or as an
upper limit.

Examples:

<x:uint32>

<x:int8 range[-12:100]>

<x:int64 range[1000]>

3.4 Addresses

CLIgen is often used in communication devices. Therefore, there is support for
several pre-defined address types. Special lexical checking is defined for those
types:

• ipv4addr - An IPv4 address in dotted decimal notation. Example: 1.2.3.4

10

3.5 Uuid 3 VARIABLES

• ipv4prefix - An IPv4 prefix in ’slash’ notation: Example: 1.2.3.0/24

• ipv6addr - An IPv6 address. Example: 2001::56

• ipv6prefix - An IPv6 prefix. Example: 2001:647::/64

• macaddr - A MAC address: Example: 00:E0:81:B4:40:7A

• url - An URL: Example: http://www.hagsand.se/cligen

CLIgen performs lexical checking of the address variables, an invalid address is
considered as a syntax error.

3.5 Uuid

A variable of type uuid accepts uuid according to standard syntax, such as
f47ac10b-58cc-4372-a567-0e02b2c3d479.

3.6 Time

A time variable accepts ISO timestamps on the form

2008-09-21T18:57:21.003456

2008-09-21 18:57:21.003456

2008-09-21 18:57:21

3.7 Boolean

A variable of bool type accepts the values true, false, on and off.

3.8 Decimal64

A variable of type decimal64 defines a subset of floating point numbers that
can be obtained by multiplying a 64-bit signed integer with a negative power of
ten, ie as can be expressed by i ∗ 10−n, where n is between 1 and 18.

The number of fraction-digits can be defined in the specification of the type, if
this is not defined explicitly, the default number of decimals is 2.

Two examples of decimal64 are 732848324.2367 (four fraction-digits) and -23.0
(one fraction-digit).

Examples of decimal64 specification is:

<d:decimal64 fraction-digits 4>;

<d:decimal64 fraction-digits 4 range[0.1:10]>;

which allows numbers with four decimals. The econd example limits the num-
bers to be between 0.1000 and 10.0000.

Note that the fraction-digits statement should come before the range state-
ment.

11

3.9 Keyword 3 VARIABLES

3.9 Keyword

A keyword variable is just an alternative way of specifying command keywords
as defined in Section 2. In fact, a syntax with static keywords can just as well
be written using keyword variables.

Thus, for example, the two specification lines below are equivalent:

aa bb;

<aa:string keyword:aa> <bb:string keyword:bb>;

However, a keyword variable can have another name:

<myname:string keyword:aa>;

Naming of keywords provides for more flexible search functions in callbacks, see
Section 5.

Note that a keyword must be of type string.

3.10 Choice

The choice variable can take the value from a static list of elements.

Example:

interface <ifname:string choice:eth0|eth1>("Interface name")

A CLI user will get the following choice:

cli> interface ’?’

eth0 Interface name

eth1 Interface name

cli>

The user can only select eth0 or eth1, and thus the value of the ifname variable
is either eth0 or eth1.

Note the resemblance with choice of strings in Section 4 where the same example
could be specified as:

interface (eth0|eth1)

Again, the former variant allows for naming of the variable which can be better
when writing a callback function. In the example, the name of the variable in the
first example is ifname whereas in the second it is either eth0 or eth1.

3.11 Expand

The choice variable specifies a static list of keywords. But what if the list is
dynamic and changes over time?

The expansion variable is a dynamic list of keywords, where the list may be
different each time the CLI command is invoked.

12

3.12 Regular expressions 4 OPERATORS

For example, assume a user can select a network interface in the CLI, but the
number of interfaces changes all the time. This can be specified as follows:

interface <ifname:string interfaces()>("Interface name")

The user’s choice in the CLI will then be just as in the choice case:

cli> interface ’?’

eth0 Interface name

eth1 Interface name

cli>

However, at another point in time, the choice of interfaces may be differ-
ent:

cli> interface ’?’

eth3 Interface name

lo0 Interface name

cli>

There is one catch here: the CLI needs to know in run-time the members of the
list. That is, the list members cannot be specified in the syntax. In CLIgen, the
application programmer defines a C callback function, interfaces() in this
example, which computes the list at the time it is needed. This callback is
registered and called whenever necessary.

How to write an expand callback is further described in Section 6.3.

3.12 Regular expressions

A string variable may be described using a regular expression. That is, a regular
expression defines which values are valid.

For example, a variable may be specified as:

<name:string regexp:"(ab|a)b*c">;

<name:string regexp:"[a-z]+[0-8]+\\.[0-9]">;

The first rule matches the following strings, for example:

ac

abc

abbbbbbbbbc

CLIgen uses POSIX Extended regular expression syntax.

4 Operators

I the regular syntax format, there are (implicit) sequence and choices. For
example, the syntax

aa bb;

cc;

13

4.1 Choice and grouping 4 OPERATORS

defines a choice between the sequence aa bb and cc.

It is also possible to explicitly define choices, optional elements and syntactical
groupings.

4.1 Choice and grouping

Explit choice between several elements can be made as follows:

(aa bb) | cc;

which expresses the same syntax as above.

Help strings work as usual, but may not be associated with groupings:

aa (bb("help b") cc("help c") | dd("help d"));

Choices may also be made with variables:

values (<int8> | <string> | <int64> | aa);

where a pattern matching is made selecting to try to select the most ’specific’
variable. For example, the following input will give different matchings:

• aa selects the keyword.

• bb selects <string>.

• 42 selects <int8>.

• 324683276487326 selects <int64>.

4.2 Optional elements

It is also possible to express an optional part of a syntax using brackets:

aa [[bb] cc];

which accepts the commands: aa, aa bb and aa bb cc.

Any combination of these operations are possible, such as in the line:

aa [[(bb|cc <int32>)] dd] ee;

Note that the elaborate command specifications above can be combined in a
regular syntax, at parsing they are just expanded into a larger syntax tree.
Thus for example, the syntax:

aa bb (ca("help ca")|cb("help cb")) [dd|ee];

is equivalent to:

aa bb{

ca("help ca");{

dd;

ee;

}

cb("help cb");{

14

5 API

dd;

ee;

}

}

which is similar to the syntax used in Section 2.

5 API

This section describes C-programming issues, including types, parsing and call-
backs.

Appendix A contains a complete program illustrating many of the topics of
this tutorial. More advanced applications can be found in the CLIgen source
repository.

5.1 CLIgen variables

Variables in the command syntax (such as <string>) described in Sections 3 and
2.5 are translated in runtime into CLIgen variables using the cg var datatype.
A CLIgen variables is sometimes referred to as a cv.

A cv is a handle and its values are accessed using get/set accessors. Two generic
fields are name and type, other fields are accessed via type-specific accessors (see
next Section).

Example: get name and type of cligen variable:

char *name = cv_name_get(cv);

enum cv_type type = cv_type_get(cv);

5.1.1 Types

CLIgen variables have a simple type-system, essentially following the types in-
troduced in Section 3. Each cv type have get/set operators to access and modify
the value.

For example, a command syntax contains <addr:ipv4addr>, and the user inputs
”12.34.56.78”. The CLI will then generate a cv which can be accessed in C. The
string ”12.34.56.78” is accessed with:

struct in_addr addr = cv_ipv4addr_get(cv);

Accessors for other types are shown in the table below. There may be several
fields for a given type. These are given in the table with the corresponding
C-type.

15

5.1 CLIgen variables 5 API

Type Accessor C-type
int8 cv int8 get() int8 t

int16 cv int16 get() int16 t

int32 cv int32 get() int32 t

int64 cv int64 get() int64 t

uint8 cv uint8 get() uint8 t

uint16 cv uint16 get() uint16 t

uint32 cv uint32 get() uint32 t

uint64 cv uint64 get() uint64 t

decimal64 cv dec64 i get() int64 t

cv dec64 n get() uint8 t

bool cv bool get() uint8 t

string cv string get() char*

ipv4addr cv ipv4addr get() struct in addr

ipv4prefix cv ipv4addr get() struct in addr

cv ipv4masklen get() uint8

ipv6addr cv ipv6addr get() struct in6 addr

ipv6prefix cv ipv6addr get() struct in6 addr

cv ipv6masklen get() uint8

macaddr cv mac get() char[6]

uuid cv uuid get() char[16]

time cv time get() struct timeval

url cv urlproto get() char*

cv urladdr get() char*

cv urlpath get() char*

cv urluser get() char*

cv urlpasswd get() char*

You may also access a value with an unspecified type using:

void *v = cv_value_get(cv);

5.1.2 Cligen variable vectors

Variables are grouped into vectors whose using cvec. Global variables or vari-
ables passed to callback functions are always grouped into cvec structures.

5.1.3 Finding variables in a vector

Suppose for example that you have the following command syntax:

person [male|female] (<age:int32>|<name:string>)

A cvec is accessed using a handle. Typically an iterator is used to access the
individual cv:s within a vector:

cvec *vr;

cg_var *cv = NULL;

while ((cv = cvec_each(vr, cv)) != NULL) {

str = cv_name_get(cv);

}

16

5.2 Initializing 5 API

You can also access the variables individually if you know their order, in this
example the 3rd element:

cvec *vr;

cg_var *cv = cvec_i(cv, 2);

A way to find variables using their names is as follows:

cg_var *cv = cvec_find(vars, "age");

Actually, kewords are also a part of variable vectors. This means that they can
also be accessed via their name, although the name of the keyword is the same
as its constant value, as described in Section 3.9.

Therefore, you can also check whether a keyword exists or not. Using the same
example:

if (cvec_find(vars, "male") != NULL)

printf("male\n");

where the conditional evaluates to true only if the user has selected male and
not female.

5.2 Initializing

An application calls the CLIgen init function to initialize the CLIgen library.
The function returns a handle which is used in most CLIgen API functions.

In the following example, CLIgen is initialized, a prompt is set, and is then
terminated:

cligen_handle h = cligen_init();

cligen_prompt_set(h, "cli> ");

[...]

cligen_exit(h);

5.3 Parsing syntax files

The command syntax as described in Sections 2-4 normally resides in a file
which is loaded and parsed by the CLI. The result of the parsing is a parse-tree
and a list of global variable assignment. After parsing, the program needs to
interpret the result and set up the CLI environment. This includes handling
global variable assignments, mapping function callbacks, etc.

Most non-trivial programs handle many syntaxes that are merged into a common
parse-tree, while others partition parse-trees into different modes.

An example of parsing syntax file mysyntax.cli is the following:

cligen_handle h;

FILE *f;

h = cligen_init();

f = fopen("mysyntax.cli");

cligen_parse_file(h, f, "mytree", NULL, NULL);

17

5.4 Global variables 5 API

cligen_loop(h);

The example code initiates a handle, opens the CLIgen syntax file, parses the
syntax into a tree called mytree and starts a CLIgen command loop.

The next step is to handle the global variables and to bind callback func-
tions.

5.4 Global variables

A syntax file may contain global variable assignments which can be accessed
by the the C-code. Suppose a syntax file contains the following global assign-
ments:

prompt="cli> "; # Assignment of prompt

These global variables are parsed and may be read by the C-code as follows:

char *prompt;

[...]

cligen_parse_file(h, f, "mytree", NULL, globals);

prompt = cvec_find_str(globals, "prompt");

cligen_prompt_set(h, prompt);

In this way a programmer may define the semantics of global variables by bind-
ing their value to actions.

5.5 Command loop

A programmer can use the pre-defined cligen loop function, or create a tailor-
made loop as follows:

for (;;){

retval = cliread_eval(h, &line, &ret);

The return value of the cliread eval function is as follows:

• CG EOF: end-of-file

• CG ERROR: CLIgen read or matching error, typically if the syntax is not
well-defined.

• CG NOMATCH: No match, the input line did not match the syntax. By calling
cligen nomatch(h), the reason for why no match was made is retrieved.

• CG MATCH: Match, the line matched exactly one syntactic node. The vari-
able ret contains the return value of the callback (if any).

• > 1: Multiple matches, the line matched several syntax lines.

18

6 ADVANCED API

6 Advanced API

6.1 Writing a callback function

A programmer may write a callback function for every complete command de-
fined in the command syntax. Such a callback is then called every time a user
types that command in the CLI.

An example of CLIgen callback function from the example in Section 1 with the
command syntax hello world,cb("hello");is:

int

cb(cligen_handle h, cvec *vars, cg_var *arg)

{

printf("%s\n", arg->var_string);

return 0;

}

The callback returns zero if everything is OK, and −1 on error. The arguments
of a callback function are:

• handle - CLIgen handle created by a call to cligen init. The handle is
used if the callback makes API calls to CLIgen, such as changing prompt,
parse-tree, etc.

• vars - The command line as a list of CLIgen variables. Both keys and
variables are included in the list.

• arg - A single CLIgen variable declared in the command syntax.

Regarding a more advanced command syntax from Section 5.1.3:

person [male|female] (<age:int32>|<name:string>),cb("person");

and an CLI input command such as:

cli> person male 67

The cligen variable vector vars has four elements and can be accessed via iter-
ation or via the cvec i() function:

1. The complete command string: person male 67.

2. The is a CLIgen string variable containing the keyword person.

3. The keyword male.

4. A CLIgen integer variable containing 67.

The arg argument contains the function argument in the command syntax:
person.

By using the values in the argument and variable vector, the callback can per-
form actions by calling CLIgen API functions. In those functions, the handle h

is usually required and used to make global changes.

19

6.2 Registering callbacks 6 ADVANCED API

6.2 Registering callbacks

A typical syntax contains callback references, such as the following:

hello world, callback("arg");

The parse-tree created in Section 5.3 contains the function names as strings
which need to be mapped to function pointers. This is a typical issue with
the C programming language. The problem is essentially the same as finding
functions in a symbol-table. Note that this mapping is not a part of CLIgen
itself but needs to be made by the application.

There are many ways to solve this issue, including using dynamic libraries and
making a lookup in real-time using dl open, mmap, or similar C library functions.
This is actually the preferred option, the other approaches described here are
not as good.

The simplest way used in this tutorial is to map all callbacks to the same
function:

cligen_callback_register(pt, callback);

It is then up to callback to determine in which context it was called using its
arguments.

A better way is to map each callback specified to a different function. This can
be made by defining a function that maps between function name strings and
actual functions and calling a mapping funtion, for example:

cg_fnstype_t *

mapper(char *name, void *arg, char **error)

{

*error = NULL;

if (strcmp(name, "callback") == 0)

return callback;

return callback; /* allow any function (for testing) */

}

cligen_callback_str2fn(pt, mapper, NULL);

6.2.1 Multiple callbacks

Several callbacks may be associated with a syntax. Example:

hello world, callback("arg"), extra();

hello world, extra2();

In this case, all three functions: callback, extra and extra2 are called, one
after the other.

20

6.3 Completion 6 ADVANCED API

6.3 Completion

If expand variables (see Section 3.11) are used, the application defines a callback
to fill in the elements of the dynamic list. Such a callback is invoked every time
the CLI asks for a command containing the corresponding expand variable.
That is, the callback may be invoked when a user types a question mark or a
TAB as well.

The following example shows the expand function expand ifname. A translator
function (str2fn) maps name of functions to actual functions. In this case it
trivially returns the expand function for all commands. More elaborate mapping
functions consult a symbol table or some other way to map the function name
supplied in the syntax, with an actual function pointer.

The expand function supplies a list of pointers to strings, in this example a list
of interfaces. The example returns a static list of interfaces: ”eth0” and ”eth1”,
a real example would dynamically get the list of interfaces. If the helptexts are
not given, the helptext in the specification is used.

int

expand_ifname(cligen_handle h, char *name, cvec *vars, cg_var *arg,

int *nr, char ***commands, char ***helptext)

{

commands = calloc(2, sizeof(char));

helptext = calloc(2, sizeof(char));

(*commands)[0] = strdup("eth0");

(*helptext)[0] = strdup("The 1st interface");

(*commands)[1] = strdup("eth1");

(*helptext)[1] = strdup("The second interface");

*nr = 2;

return 0;

}

expand_cb *

str2fn(char *name, void *arg, char **error)

{

return expand_ifname;

}

main()

{

[...]

cligen_parse_file(h, f, "mysyntax", &pt, &globals) < 0)

if (cligen_expand_str2fn(pt, str2fn, NULL) < 0)

return -1;

[...]

}

In other words, as soon as the user selects a line containing the variable interfaces,
expand ifname() will be called. Therefore, be careful to avoid blocking calls

21

7 INSTALLATION

within the callbacks since this may make the CLI less interactive.

7 Installation

CLIgen is easiest installed from github. Just clone the source, configure it and
type make, and try the tutorial program:

> git clone https://github.com/olofhagsand/cligen.git

> cd cligen

> ./configure

> make

> sudo make install

> ./cligen_tutorial -f tutorial.cli

hello>

CLIgen can be installed on a variety of platforms using configure. Installa-
tion installs library and include files in the system. It is also possible to
install library only (or include-files only) using make install-lib (or make

install-include).

22

7 INSTALLATION

Appendix A: Tutorial command syntax

This appendix contains an example command syntax. Most of it has appeared
in the tutorial. This example is found in the file tutorial.cli in the source
release.

This file is part of CLIgen.

$Id: cligen_tutorial.tex,v 1.33 2014/11/09 19:58:30 olof Exp $

Copyright (C) 2011-2013 Olof Hagsand

prompt="hello> "; # Assignment of prompt

comment="#"; # Same comment as in syntax

treename="tutorial"; # Name of syntax (used when referencing)

hello("Greet the world"){ # ’hello’ command with help text

world, hello("Hello World!"); # ’world’ command with callback

}

Nested command using callback arguments to differentiate

ip("The IP protocol"){

tcp("The TCP protocol") <uint16>("Port number"), cb("tcp");

udp("The UDP protocol") <ipaddr>("IPv4 address"), cb("udp");

}

Example of commands on several levels

aa bb,cb();{

ff,cb();

}

Example of complex variable matching

values (<int8> | <string> | <int64> | aa), cb();

Complex syntax and callback argument handling

aa bb (ca("help ca") <int32>|cb("help cb")) [dd|ee], letters();

Expand example

interface {

<ifname:string interface()>,cb();

}

Example of hidden command

secret,hide,secret("message");

Example of changing prompt

change prompt <new:string>("New prompt"),setprompt();

Example of sub-tree reference (here recursion).

recurse @tutorial;

Quit CLI

quit("quit the CLI"),quit();

23

7 INSTALLATION

Appendix B: API functions

This appendix contains a list of cligen API functions. There are several more
which may be found in examples and include files.

cvec cvec new (int len)

Create and initialize a new cligen variable vector (cvec)

cligen handle cligen init(void)

This is the first call the CLIgen API and returns a handle.

int cligen exit(cligen handle h)

This is the last call to the CLIgen API

int cligen comment set(cligen handle h, char c)

Set comment character.

int cligen prompt set(cligen handle h, char *prompt)

Set CLIgen prompt string.

parse tree *cligen tree(cligen handle h, char *name)

Get a parsetree, if name==NULL, return first parse-tree

int cligen tree add(cligen handle h, char *name, parse tree pt)

Add a new parsetree

char* cligen tree active(cligen handle h)

Get name of currently active parsetree.

int cligen tree active set(cligen handle h, char *treename)

Set currently active parsetree by name.

int cligen completion(cligen handle h)

Get completion mode. 0: complete 1 level. 1: complete all

int cligen completion set(cligen handle h, int mode)

Set completion mode. 0: complete 1 level. 1: complete all

int cligen terminalrows(cligen handle h)

Get number of displayed terminal rows.

int cligen terminalrows set(cligen handle h, int rows)

Set number of displayed terminal rows.

int cligen terminal length(cligen handle h)

Get length of lines (number of ’columns’ in a line).

int cligen terminal length set(cligen handle h, int length)

Set length of lines (number of ’columns’ in a line).

int cligen tabmode(cligen handle h)

Get tab-mode. 0 is short/ios mode, 1 is long/junos mode.

int cligen tabmode set(cligen handle h, int mode)

Set tab-mode, 0 is short/ios mode, 1 is long/junos mode.

int cligen lexicalorder(cligen handle h)

Get lexical matching order: strcmp (0) or strverscmp (1).

int cligen lexicalorder set(cligen handle h, int n)/*!

Set lexical matching order: strcmp (0) or strverscmp (1).

24

7 INSTALLATION

int cligen ignorecase(cligen handle h)

Ignore uppercase/lowercase or not

int cligen ignorecase set(cligen handle h, int n)

Ignore uppercase/lowercase or not

int cligen userhandle set(cligen handle h, void *userhandle);

Set app-spefici handle for callbacks instead of cligen handle

int cligen logsyntax set(cligen handle h, int n) Debug syntax by printing dy-
namically on stderr. Get function.

cvec *cvec new(int len)

Create and initialize a new cligen variable vector (cvec)

int cvec free(cvec *vr)

Free a cvec

int cvec init(cvec *vr, int len)

Initialize a cligen variable vector (cvec) with ’len’ numbers of variables.

int cvec reset(cvec *vr)

Like cvec free but does not actually free the cvec.

cg var *cvec next(cvec *vr, cg var *cv0)

Given an cv in a cligen variable vector (cvec) return the next cv.

cg var *cvec add(cvec *vr, enum cv type type)

Append a new cligen variable (cv) to cligen variable vector (cvec) and return

it.

int cvec del(cvec *vr, cg var *del)

Delete a cv variable from a cvec. Note: cv is not reset and may be stale!

int cvec len(cvec *vr)

return length of a cvec.

cg var *cvec i(cvec *vr, int i)

return i:th element of cligen variable vector cvec.

cg var *cvec each(cvec *vr, cg var *prev)/*!

Iterate through all cligen variables in a cvec list

cg var *cvec each1(cvec *vr, cg var *prev)

Like cvec each but skip element 0.

cvec *cvec dup(cvec *old)

Create a new cvec by copying from an original

int cvec match(cg obj *co match, char *cmd, cvec *vr)

Create cv list by matching a CLIgen parse-tree and an input string.

int cvec start(char *cmd)

Create a cv list with a single string element.

int cvec print(FILE *f, cvec *vr)

Pretty print cligen variable list to a file

cg var *cvec find(cvec *vr, char *name)

Return first cv in a cvec matching a name

cg var *cvec find var(cvec *vr, char *name)

Like cvec find, but only search non-keywords

25

7 INSTALLATION

cg var *cvec find keyword(cvec *vr, char *name)

Like cvec find, but only search keywords

char *cvec find str(cvec *vr, char *name)

Typed version of cvec find that returns the string value.

int cv exclude keys(int status)

Changes cvec find function behaviour, exclude keywords or include them.

int cligen output(FILE *f, char *template, ...)

CLIgen output function. All output should be made via this function.

void cligen susp hook(cligen handle h, int (*fn)(void *h, char *, int, int

*))

Register a suspend (Ẑ) function hook

void cligen exitchar add(cligen handle h, char c)

Register extra exit characters (in addition to ctrl-c)

int cligen help(FILE *f, parse tree pt)

Print top-level help (all commands) of a parse-tree

int cov print(cg obj *co, char *cmd, int len, int brief)

Print the syntax specification of a varible syntax spec

int cligen print(FILE *f, parse tree pt, int brief)

Print CLIgen parse-tree to file, brief or detailed.

int cliread eval(cligen handle h, char **line, int *cb retval)

Read line from terminal, parse the string, and invoke callbacks.

int cligen parse str(cligen handle h, char *str, char *name, parse tree *pt,

cvec *vr)

Parse a string containing a CLIgen spec into a parse-tree

int cligen parse file(cligen handle h, FILE *f, char *name, parse tree *pt,

cvec *globals)

Parse a file containing a CLIgen spec into a parse-tree

int cligen callback str2fn(parse tree pt, cg str2fn t *str2fn, void *fnarg)

Assign functions for callbacks in a parse-tree using a translate function

int cligen expand str2fn(parse tree pt, expand str2fn t *str2fn, void *fnarg)

Register functions for variable completion in parse-tree using translator

char *cv name get(cg var *cv)

Get name of cligen variable cv

char *cv name set(cg var *cv, char *s0)

allocate new string from original. Free previous string if existing.

enum cv type cv type get(cg var *cv)

Get cv type

void *cv value get(cg var *cv)

Get value of cv without specific type set

<char cv bool get(cg var *cv)

Get boolean value of cv

int8 t cv int8 get(cg var *cv)

Get 8-bit integer value of cv

26

7 INSTALLATION

int16 t cv int16 get(cg var *cv)

Get 16-bit integer value of cv

int32 t cv int32 get(cg var *cv)

Get 32-bit integer value of cv

int64 t cv int64 get(cg var *cv)

Get 64-bit integer value of cv

uint8 t cv uint8 get(cg var *cv)

Get 8-bit unsigned integer value of cv

uint16 t cv uint16 get(cg var *cv)

Get 16-bit unsigned integer value of cv

uint32 t cv uint32 get(cg var *cv)

Get 32-bit unsigned integer value of cv

uint64 t cv uint64 get(cg var *cv)

Get 64-bit unsigned integer value of cv

char *cv string get(cg var *cv)

Get pointer to cv string.

char *cv string set(cg var *cv, char *s0)

allocate new string from original. Free previous string if existing.

struct in addr *cv ipv4addr get(cg var *cv)

Get ipv4addr, pointer returned, can be used to set value.

uint8 t cv ipv4masklen get(cg var *cv)

Get ipv4addr length of cv

struct in6 addr *cv ipv6addr get(cg var *cv)

Get ipv6addr, pointer returned, can be used to set value.

uint8 t cv ipv6masklen get(cg var *cv)

Get ipv6addr length of cv

char *cv mac get(cg var *cv)

Returns a pointer to 6-byte mac-address array.

unsigned char *cv uuid get(cg var *cv)

Returns a pointer to uuid byte array.

struct timeval cv time get(cg var *cv)

Returns a struct timeval by value.

char *cv urlproto get(cg var *cv)

Get pointer to URL proto string.

char *cv urladdr get(cg var *cv)

Get pointer to URL address string.

char *cv urlpath get(cg var *cv)

Get pointer to URL path string.

char *cv urluser get(cg var *cv)

Get pointer to URL user string.

char *cv urlpasswd get(cg var *cv)

Get pointer to URL passwd string.

27

7 INSTALLATION

char *cv flag(cg var *cv)

Get application-specific cv flag.

char *cv flag clr(cg var *cv)

Clear application-specific cv flag.

char *cv flag set(cg var *cv)

Set application-specific cv flag.

enum cv type cv str2type(char *str)

Translate (parse) a string to a CV type.

char *cv type2str(enum cv type type)/*!

Translate (print) a cv type to a static string.

int cv len(cg var *cv)

Return length of cligen variable value (as encoded in binary)

int cv2str(cg var *cv, char *str, size t size)

Print value of CLIgen variable using printf style formats.

char *cv2str dup(cg var *cv)

Like cv2str, but allocate a string with right length.

int cv print(FILE *f, cg var *cv)

Pretty print cligen variable value to a file

int cv parse1(char *str0, cg var *cv, char **reason)/*!

parse cv from string.

cv validate(cg var *cv, cg varspec *cs, char **reason)

Validate cligen variable cv using the spec in cs.

int cv cmp(cg var *cgv1, cg var *cgv2)

Compare two cv:s

int cv cp(cg var *new, cg var *old)

Copy from one cv to a new cv.

cg var *cv dup(cg var *old)

Create a new cgv and copy the contents from the original.

cg var *cv new(enum cv type type)

Create new cligen variable.

int cv reset(cg var *cgv)

Free pointers and resets a single CLIgen variable cv

int cv free(cg var *cv)

Free a single CLIgen variable (cv) AND frees the cv itself

int pt apply(parse tree pt, cg applyfn t fn, void *arg)

Apply a function call recursively on all cg obj:s in a parse-tree.

28

7 INSTALLATION

Appendix C: Control sequences

The control sequences of the runtime CLI is as follows:

Control sequence Action Comment

? Help

Ctrl + A Go to beginning of line

Ctrl + B One char backwards

Ctrl + C Exit CLI Add extra w cligen exitchar add().

Ctrl + D End-of-file. Exit if at beginning of line

Ctrl + E Goto end of line

Ctrl + F One char forward

Ctrl + H Erase previous character Backspace

Ctrl + I Auto completion TAB

Ctrl + K Erase line after cursor

Ctrl + L Redraw line

Ctrl + N Move to next line in history

Ctrl + O Toggle overwrite mode

Ctrl + P Move to previous line in history

Ctrl + R Search history list backward

Ctrl + S Search history list forward

Ctrl + T Transpose character

Ctrl + U Erase line before cursor

Ctrl + W Erase word backward

Ctrl + Y Insert previously deleted text ’yank’

Ctrl + Z ’Suspend’ Register callback:

cligen susp hook()

Arrow up Move to previous line in history

Arrow down Move to next line in history

Arrow left One char backward

Arrow right Once char forward

ESC + F Move one word forward

ESC + B Move one word backward

29

